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scales, such as two-loop and three-loop box integrals and tensor integrals of rank six for

the one-loop hexagon topology.
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1. Introduction

Perturbative methods are indispensable in order to establish consistent theories of particle

interactions, and to predict quantitatively their experimental manifestations. The anticipa-

tion of new phenomena in modern experiments and theoretical extensions of the Standard

Model, requires cross-sections for complicated processes. This has driven a remarkable

progress in the development of new computational methods. At the one-loop level, the

calculation of cross-sections with five external legs is gradually becoming a routine activity

(e.g. [1]). At two-loops, there have been recent successful computations of amplitudes with

four external legs and up to three kinematic scales (e.g. [2]). At three-loops and beyond,

amplitudes with up to one parametric variable have also been computed (e.g. [3]).

Many new processes with higher final-state multiplicity, number of loops, and kinematic

scales, have been identified to be important at the TeV energy frontier. The aim of our

paper is to provide a new method which can be used to compute loop amplitudes for such,

more complicated, processes.
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Loop integrations are cumbersome due to the presence of infrared singularities. Loop

integrals with many kinematic scales have, in addition, a complicated analytic structure

with respect to their kinematic parameters. The tensor structure in gauge theories is

also an issue, since it proliferates the number of terms. A general method for computing

arbitrary loop integrals should extract their infrared and ultraviolet singularities, and treat

simply kinematic discontinuities and threshold singularities. For practical applications,

it should also be able to handle tensor integrals efficiently. There is no method which

addresses satisfactorily all these issues; known techniques can compute a limited number

of amplitudes where some simplifications occur in special cases.

Following a traditional approach to calculate loop amplitudes, one reduces the number

of terms to a few master integrals and computes the latter analytically. One-loop integrals

can be reduced using the classical method of Passarino and Veltman [4]. For generic multi-

loop computations one can derive reduction identities from integration by parts [5] and the

invariance of scalar integrals under Lorentz transformations [6]. There is a large variety of

approaches for evaluating the master integrals analytically. For example, one can compute

integrals with a simple singularity structure and a small number of kinematic scales by

integrating directly their Feynman parameter representation. For more complicated cases

one can use advanced techniques, such as the method of differential equations [8, 7, 6].

This approach can fail, however, if we apply it to complicated processes. The reduction

algebra is hard, and the expressions of amplitudes in terms of master integrals may have

spurious singularities which hamper their numerical evaluation. The extraction of ε poles in

the master integrals, the evaluation of the coefficients of the ε-expansion in terms of known

analytic functions, and the analytic continuation of the latter to physically interesting

kinematic regions are also involved. It is, thus, very well motivated to improve or replace

the “traditional scheme” and to develop new automated methods.

One-loop amplitudes can be entirely determined in four dimensions in terms of basic

functions such as logarithms and polylogarithms that appear in the one-loop scalar box.

New methods introduce sophisticated algorithms for the reduction to the basic functions; by

either numerical or analytical techniques, they control the appearance of spurious singular

terms and minimize the size of the intermediate expressions [9 – 14]. Recently, cross-sections

for e+e− → 4 fermion processes at NLO were computed [15] using such techniques. A

method, which is inspired by techniques for real radiation at NLO, renders one-loop graphs

numerically integrable [16] with the introduction of universal subtraction terms. A different

approach uses unitarity, dualities, and analyticity properties for the determination of one-

loop amplitudes [17].

Beyond one-loop, there has been a significant progress in the automation of the reduc-

tion methods to master integrals [18 – 20]. The infrared structure of multi-loop integrals

is substantially more complex than at one-loop; the development of methods for their nu-

merical evaluation is more difficult. Nevertheless, there is significant progress in this direc-

tion [21]. A powerful numerical method for multi-loop calculations is the method of sector

decomposition [22 – 24]; it simplifies recursively the singularities of Feynman parameteri-

zations and allows a straightforward expansion in ε. The method of sector decomposition

has been very succesfully employed in the computation of several multi-leg integrals at one,
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two and three loops [11, 22, 23]. This method has been introduced, recently, for the purely

numerical evaluation of multi-loop amplitudes [26]. However, it is perplexing how to apply

it for loop-integrals in non-Euclidean regions.

In 1999, Smirnov [27] and, soon later, Tausk [28], introduced a new method for the

evaluation of loop integrals. In their pioneering papers, Smirnov and Tausk [27, 28] com-

puted analytically the first infrared divergent double box integrals. In [29, 30] new two-loop

integrals for 2 → 2 massless processes were computed. In [31] the method was applied to

double-box integrals with one additional mass-scale. The method was spectacularly applied

in the computation of three-loop amplitudes [32, 33] in N = 4 supersymmetric Yang-Mills

theory, shedding light to novel cross-order perturbative relations of the theory [33, 34].

The Smirnov-Tausk method is based on a few simple ideas. Starting from the Feynman

parameterization of a loop integral we can derive a new representation in terms of a multiple

complex contour integral. Such, Mellin-Barnes (MB), parameterizations have enabled com-

picated loop calculations by using powerful methods for complex integration [36]. Smirnov

and Tausk exploited a novel property of these representations. Infrared divergences localize

on simple poles inside the complex integration volume. We can isolate the divergent pieces

of the integral at ε = 0, by using the Cauchy theorem. After subtracting the divergent

residues, we can perform a Taylor expansion in ε, and sum up the remaining infinite series

of residues. Finally, we can work to derive analytic expressions for the infinite sums in the

coefficients of the expansion in terms of logarithms, generalized polylogarithms [35], and

more complicated functions.

The Smirnov-Tausk method is very powerful; however, it is laborious and intricate.

The isolation of the divergent residues in multiple Mellin-Barnes integrals is convoluted.

In addition, it is difficult to identify infinite sums in terms of polylogarithm functions

with known analyticity properties. As a consequence, the analytic continuation in physical

kinematic regions is also involved. Due to these complications, the method has been applied

to a few master integrals with a small number of kinematic scales. In this paper, we

generalize the method to a broader spectrum of applications.

As a first task, we automate the procedure for the isolation of the divergent residues

at ε → 0. Smirnov [27] and Tausk [28] use different techniques for finding these residues.

The approach of Smirnov is very intuitive, but daedal. We have found that the technique

described by Tausk in ref. [28] resembles closely to a programmable algorithm. We have

used it as a guide and we have written computer programs which subtract the 1/ε poles in

arbitrary Mellin-Barnes integrals.

In our method, we avoid entirely the painstaking tasks of finding analytic expressions

for infinite sums in terms of polylogarithms, and performing the analytic continuation in the

arguments of polylogarithms. Mellin-Barnes representations are valid in kinematic regions

where loop integrals may be complex-valued. We have found that, in a broad spectrum of

applications, it is simple to calculate the representations numerically. The only analytic

continuation that is ever required is that of logarithms with a single kinematic scale as an

argument. Unfortunately, the method yields poor numerical results for loop integrals with

massive propagators, in kinematic regions where mass-dependent threshold singularities

arise. We will study how to improve our method for such applications in future work.
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An important goal of our method is to calculate loop amplitudes in realistic gauge

theories. We have found that tensor integrals and, furthermore, diagrams which belong

to the same topology can be calculated collectively. As we will show, the integrand of a

representation for a scalar integral will be a product of Gamma functions and powers of

kinematic invariants, while that of a generic tensor will be the same integrand as in the

scalar integral multiplied by a polynomial in the integration variables. The evaluation of

polynomials is fast in a numerical program; the computational cost for evaluating tensor

integrals or loop diagrams is not significantly larger than evaluating scalar integrals. The

only practical issue that we need to address, is the book-keeping of the various terms that

contribute to the polynomial; we present an efficient solution of this problem here.

In this paper, we apply our method to a number of examples. We, first, test our method

in scalar and tensor integrals of the one-loop massless hexagon topology. The purpose of

this computation is to introduce our method for tensor integrals and to demonstrate that

we can tackle problems which are relevant in computations of physical amplitudes. We

present here results for tensors through rank six, in both the Euclidean and the physical

region for 2 → 4 processes. The numerical programs that we have constructed are suitable

for the evaluation of the QCD amplitudes in four-jet production at hadron colliders.

In the second set of examples, we compute scalar two and three-loop integrals which

are known analytically in all kinematic regions: the massless planar [27] and cross [28]

double-box, the massless double-box with one off-shell leg [37 – 40, 31], and the massless

planar triple-box [32]. They serve to cross-check our algorithms and to demonstrate that we

can easily reproduce state-of-the-art computations. Our numerical results are in excellent

agreement with the analytic expressions. We also present a number of new results that

would require significant efforts for their computation with traditional approaches. We

present, for the first time, double-box integrals with up to four kinematic parameters, and

triple-box integrals with up to three kinematic parameters computed in all physical regions.

In section 2, we explain our technique for deriving Mellin-Barnes representations for

loop integrals. In section 3, we describe our routines for performing an ε-expansion of

Mellin-Barnes representations for scalar integrals. We extend these results to loop integrals

with tensor numerators in section 4 and, in section 5, we present our methods for the

numerical integration. Section 6 is devoted to present our results for several integrals at

the one, two and three loop level. Finally we present our conclusions.

2. Mellin Barnes representations

We start with a brief discussion on the derivation of Mellin-Barnes representations for loop

integrals from their Feynman parameterization. The construction of parameterizations

is not unique, and various representations of the same integral may have quite different

features. For example, they could have a different integral dimensionality, or they could

be better or worse suited for numerical evaluation. A valid parameterization, however, can

always be found. A pedagogical introduction to the topic of Mellin-Barnes representations

is presented in ref. [41].
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As a concrete example we consider the one-loop box integral with two adjacent external

legs off-shell and massless propagators,

I2m
4 =

∫

ddk

iπ
d
2

1

Aν1

1 Aν2

2 Aν3

3 Aν4

4

, (2.1)

with

A1 = k2 + i0,

A2 = (k + p1)
2 + i0,

A3 = (k + p1 + p2)
2 + i0,

A4 = (k + p1 + p2 + p3)
2 + i0,

and p2
1 = p2

2 = 0, (p1 +p2)
2 = s, (p2 +p3)

2 = t, p2
3 = M2

1 , (p1 +p2 +p3)
2 = M2

2 . The powers

of the propagators {νi} and the dimension d = 4− 2ε are kept arbitrary and we will derive

a Mellin-Barnes parameterization of the box-integral in this general case. In this section,

we will seek values for {νi, d} where the representation is well defined and the integral is

finite. In the next section, we will explain the technique for the analytic continuation to the

values of the parameters, such as {νi = 1, ε = 0}, where the integral develops divergences.

Our starting point is the Feynman parameterization of the box integral:

I2m
4 = (−1)N

Γ(N − d
2)

Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)

×

∫ 1

0

dx1dx2dx3dx4x
ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4 δ (x1 + x2 + x3 + x4 − 1)
(

−sx1x3 − tx2x4 − M2
1 x3x4 − M2

2 x4x1 − i0
)N− d

2

, (2.2)

with N = ν1 + ν2 + ν3 + ν4. The main tool for obtaining the Mellin-Barnes representation

of the above integral is the formula:

1

(A1 + A2)
α =

1

2πi

∫ c+i∞

c−i∞
dwAw

1 A−α−w
2

Γ(−w)Γ(α + w)

Γ(α)
, (2.3)

where the following conditions are satisfied:

1. A1,2 are complex numbers with |args(A1) − args(A2)| < π,

2. the contour of integration is a straight line parallel to the imaginary axis separating

the poles of Γ(−w) and Γ(α + w), i.e. −Re(α) < c < 0.

We can use the identity of eq. (2.3) to simplify the entangled denominator of eq. (2.2), with

the cost of introducing new integrations in the complex plane. Before we do so, we would

like to point out an attractive feature of eq. (2.3). The above two conditions guarantee

that the integrand in the right hand side of eq. (2.3) vanishes at infinity. We can then close

the contour of integration at infinity and calculate the integral using the Cauchy theorem.

If we close the contour to the side of the positive real-axis we obtain

r.h.s. =
1

Aα
2

∞
∑

n=0

Γ(α + n)

Γ(α)n!

(

−
A1

A2

)n

(2.4)
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This is the Taylor expansion of the left hand side of eq. (2.3) in the region |A1/A2| <

1. Equivalently, by closing the contour of integration to the side of the negative real

axis, we obtain a Taylor expansion in the complementary region |A2/A1| < 1. This is a

particularly useful property: representations of Feynman integrals which are derived by

using the Mellin-Barnes decomposition are valid in all kinematic regions. In addition, A1,2

can be complex; therefore, we can account for the infinitesimal imaginary part i0 that is

assigned to invariant masses and kinematic parameters. Eq. 3 may be recursively applied

to denominators with more than two terms, yielding:

1

(A1 + A2 + · · ·Am)α =
1

(2πi)m−1

∫ c+i∞

c−i∞
dw1 . . . dwm−1A

w1

1 . . . A
wm−1

m−1 A−α−w1−···−wm−1

m

×
Γ(−w1) · · ·Γ(−wm−1)Γ(α + w1 + · · ·wm)

Γ(α)
, (2.5)

We are now ready to apply the decomposition of eq. (2.5) to the denominator of eq. (2.2),

introducing three contour integrations:

I2m
4 ({νi, d}) = (−1)N

∫ 1

0

(

4
∏

l=1

dxl

xνl−1
l

Γ(νl)

)

δ (x1 + x2 + x3 + x4 − 1)

×
1

(2πi)3

∫

dw1dw2dw3Γ(−w1)Γ(−w2)Γ(−w3)Γ(N −
d

2
+ w1 + w2 + w3)

×
(

−x3x4M
2
1

)w1
(

−x4x1M
2
2

)w2 (−x2x4t)
w3 (−x1x3s)

d
2
−N−w1−w2−w3 ,(2.6)

where the contours must satisfy condition 2 above, i.e. they must be chosen in such a way

that the arguments of the Gamma functions are all positive. It is now straightforward to

integrate out the Feynman parameters, using

∫ 1

0

(

n
∏

i=1

dxix
αi−1
i

)

δ
(

1 −
∑

xi

)

=
Γ(α1) · · ·Γ(αn)

Γ(α1 + · · · + αn)
. (2.7)

To exchange the order of integrations, we must assume that the exponents of the Feynman

parameters satisfy

Re(αi) > 0. (2.8)

With these conditions the Gamma functions on the right hand side of eq. (2.7) have argu-

ments with positive real part as well. The final result is:

I2m
4 ({νi, d}) =

(−1)N

(2πi)3

∫

dw1dw2dw3Γ(−w1)Γ(−w2)Γ(−w3)

×f(ν1, ν2, ν3, ν4, w1, w2, w3)

×
(

−M2
1 − i0

)w1
(

−M2
2 − i0

)w2 (−t − i0)w3 (−s − i0)
d
2
−N−w123 , (2.9)

where

f(ν1, ν2, ν3, ν4, w1, w2, w3) =

(

4
∏

l=1

1

Γ(νl)

)

Γ
(

ν1234 −
d
2 + w123

)

Γ(d − ν1234)

×Γ (ν2 + w3) Γ (ν4 + w123) Γ

(

d

2
− ν234 − w13

)

Γ

(

d

2
− ν124 − w23

)

(2.10)
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and we have adopted the shorthand notation

νijk... = νi + νj + νk + · · ·

In general, Mellin-Barnes representations for a loop-integral are well defined for number

of dimensions and powers of propagators which render the real parts of the arguments

in all Gamma functions positive. For example, it is impossible to satisfy positivity in all

Gamma function arguments for {νi = 1, d = 4}. This is in accordance with the expectation

that the scalar box integral is infrared divergent in four dimensions. But, for example, the

representation of eq. (2.9) is well defined if we choose the contour Re(w1) = Re(w2) =

Re(w3) = −0.2 and the parameters {νi = 1, d = 5.4}. In the next section we will detail the

analytic continuation from values of parameters for which the Mellin-Barnes representation

is well-defined to values for which the integral develops divergences. That is, a procedure

which makes the divergences appear explicitly in the form of poles in the parameter space.

From eq. (2.9) we observe that it is simple to implement the analytic continuation of

kinematic parameters in a numerical evaluation, since they always appear in a factorized

form, e.g.

(−t − i0)w = ew log(−t−i0).

We need the analytic continuation of simple logarithms; these are evaluated trivially in all

kinematic regions:

log(−t − i0) = log(|t|) − Θ(t)iπ.

It is clear from the above example that we can derive a Mellin-Barnes representation for

any integral starting from its Feynman parameterization. The form of the parameterization

depends on the choice of Feynman parameters, the order in which the Ai terms appear in

the right hand side of eq. (2.5), and the implementation of the delta function constraint

for the Feynman parameters. This arbitrariness is more pronounced beyond one-loop.

In section 4 we will derive representations for tensor one-loop integrals which simplify

their numerical evaluation. We aim to find similarly simple representations for multi-loop

tensor integrals as well. For this purpose, it is convenient to use the one-loop representations

as building blocks, by employing a re-insertion technique [30, 36]. We explain this technique

in our second example.

We now derive a Mellin-Barnes representation for the massless planar double-box in-

tegral with two adjacent legs off-shell. The integral is defined:

J 2m
4 =

∫

ddk

iπ
d
2

ddl

iπ
d
2

1

A1A2A3A4A5A6A7
, (2.11)

with

A1 = k2 + i0,

A2 = (k + p1)
2 + i0,

A3 = (k + p1 + p2)
2 + i0,

A4 = (l + p1 + p2)
2 + i0,

– 7 –
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A5 = (l + p1 + p2 + p3)
2 + i0,

A6 = l2 + i0,

A7 = (k − l)2 + i0,

and p2
1 = p2

2 = 0, (p1 + p2)
2 = s, (p2 + p3)

2 = t, p2
3 = M2

1 , (p1 + p2 + p3)
2 = M2

2 . For

simplicity, we have set the powers of propagators to one. We perform, first, the k-loop

integral and derive the representation for this integral reading it off from the one-loop

result of eq. (2.9),

J 2m
4 =

1

(2πi)3

∫

ddl

iπ
d
2

1

A4A5A6

∫

dw1dw2dw3Γ(−w1)Γ(−w2)Γ(−w3)

×f(1, 1, 1, 1, w1 , w2, w3)(−s)
d
2
−4−w123(−A4)

w1(−A6)
w2(−A8)

w3; (2.12)

the off-shell legs of the k-loop box correspond to the A4, A6 propagators while the t invariant

mass gives rise to a new propagator for the second integration:

A8 = (l + p1)
2. (2.13)

The propagators A4, A5, A6, A8 form a new one-loop box with two adjacent legs off-shell,

and we can read off, once again, the representation for this second integration using

eq. (2.9). The final result for the two-loop box with two adjacent legs off-shell is:

J 2m
4 =

−1

(2πi)6

∫

(

6
∏

i=1

dwiΓ(−wi)

)

(−s)d−7−w456(−M2
1 )w4(M2

2 )w5(−t)w6

f(1, 1, 1, 1, w1, w2, w3)f(1 − w2,−w3, 1 − w1, 1, w4, w5, w6) (2.14)

We have produced a representation for a two-loop integral by embedding representations for

one-loop integrals into other representations. It is obvious that we can use the re-insertion

method for writing representations for arbitrary multi-loop integrals.

Representations for integrals with given kinematic scales can be used to derive, easily,

results for simpler integrals where some of the scales are taken to zero. Let us, for illus-

tration, derive the representation for the double-box with one-leg off-shell and the on-shell

double-box. We must first take the limit M2
2 → 0 in eq. (2.14). The term (M2

2 )w5 is

vanishing in this limit unless w5 → 0 at the same time. If we use the Cauchy theorem,

we find that the wanted limit is given by taking the residue of the integrand at w5 = 0.

Therefore, the double-box with one-leg off-shell is:

J 1m
4 =

−1

(2πi)5

∫

(

5
∏

i=1

dwiΓ(−wi)

)

(−s)d−7−w45(−M2
1 )w4(−t)w5

f(1, 1, 1, 1, w1 , w2, w3)f(1 − w2,−w3, 1 − w1, 1, w4, 0, w5) (2.15)

Similarly, the on-shell double-box is given by:

J 0m
4 =

−1

(2πi)4

∫

(

4
∏

i=1

dwiΓ(−wi)

)

(−s)d−7−w4(−t)w4

f(1, 1, 1, 1, w1 , w2, w3)f(1 − w2,−w3, 1 − w1, 1, 0, 0, w4). (2.16)

– 8 –
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Note that, in order to have a finite limit for a vanishing kinematic scale, the Mellin-Barnes

representation should have terms in the integrand which behave as Γ(−g(wi))M
g(wi). These

emerge naturally in non-trivial representations due to eq. (2.3).

3. Analytic continuation

In the previous section we have noted that the Mellin-Barnes representation of a loop

integral is valid if appropriate poles of the Gamma functions lay separated on the right

and left of the integration contours. This condition guarantees the equivalence between the

Mellin-Barnes integral and the original denominator in the loop integral. It often occurs

that this condition can not be satisfied for values of the dimension parameter and the

powers of the propagators which are relevant for a realistic application. Let us consider, as

an example, the one-loop box representation of eq. (2.9) in the case of powers of propagators

set to unity and the dimension in d = 4 − 2ε,

I2m
4 =

1

(2πi)3

∫

dw1dw2dw3Γ(−w1)Γ(−w2)Γ(−w3)
Γ (2 + ε + w123)

Γ(−2ε)

×Γ (1 + w3) Γ (1 + w123) Γ (−1 − ε − w13) Γ (−1 − ε − w23)

×
(

−M2
1

)w1
(

−M2
2

)w2 (−t)w3 (−s)−2−ε−w123 . (3.1)

This representation can only be valid for values of ε different from zero. For example, if

we choose the contour C = {Re(w1) = −0.1,Re(w2) = −0.2,Re(w3) = −0.3} we find that

ε should be in the interval −1.4 < ε < −0.6.

We can use the Cauchy theorem to obtain a representation in terms of a sum of contour

integrals, which is valid at ε = 0 and the 1/ε poles appear explicitly. The key point is that

if the value of ε is chosen outside the allowed region, for example ε = 0, some of the poles

of the Gamma functions will be on the wrong side of the contours (see figure 1). To recover

the original result, we must compare the position of the poles relative to the contours for

values of ε inside the allowed region and the point outside. Depending whether the poles

crossed the contours from left or right, we should correct the representation by adding

or subtracting the residue of the integrand on those poles. This simple observation can

be easily cast into general purpose algorithms which extract the poles in ε of arbitrary

Mellin-Barnes representations.

Let us choose a value of ε inside the allowed region and observe the position of the

poles with respect to the contours for some ε-dependent Gamma functions in our example.

The poles of Γ(−1 − ε − w13) and Γ(−1 − ε − w23), at −1 − ε − Re(w3) + n > Re(w1)

and −1 − ε − Re(w3) + n > Re(w2), are situated to the right of the w1 and w2 contours,

respectively, for all non-negative integers n. Let us now take ε → 0. We observe that the

first poles, for n = 0, moved to new positions, −1 − Re(w3) < Re(w1) and −1 − Re(w3) <

Re(w2), which are on the left side of the contours. The poles for n > 0 remain on the

right side. Therefore, the representation is not valid at ε ' 0, since the contours separate

poles which originate from the same Gamma function. To obtain a valid expression for the

integral at ε = 0, we need to use the Cauchy theorem to isolate the crossing poles (n = 0).

– 9 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

ε=0ε=ε0

Im(w)

Re(w) Re(w)

Im(w)

Figure 1: On the left picture, all poles which originate from the same Gamma function are

positioned either to the left or to the right of a contour of integration. On the second picture,

we take ε → 0, and some of the poles cross to the other side of the contour. To recover a valid

representation for the loop-integral, these poles sould be isolated using the Cauchy theorem.

Smirnov, in ref. [41], provides a number of pedagogical examples where this is done.

The approach of Smirnov is to deform the multiple contours, using the Cauchy theorem,

so that the “offending” poles never cross the contour of integration. Tausk, in ref. [28],

describes in detail this task as well, using as an explicit example the Mellin-Barnes repre-

sentation for the two-loop cross box integral. The technique of Tausk is different from the

one of Smirnov; the main idea is to account for the poles that end up on the “wrong” side

of the contour in a progressive way, as they cross the contours when changing continuously

the value of ε. In this paper, we have followed the approach of Tausk. We would like to

recommend that the interested reader studies the pedagogical example of ref. [28]. Here

we discuss our implementation of the algorithm which is depicted in the flow diagram of

figure 2.
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Figure 2: Analytic continuation algorithm.
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Consider the Mellin-Barnes representation R of a loop integral. The integrand of

R depends initially on Gamma functions. The application of the analytic continuation

algorithm requires the iterative evaluation of residues. These may also give rise to Psi

functions, which have poles in the same positions the Gamma functions do, and are treated

identically for the purposes of analytic continuation. The contours C of the representation

are straight lines parallel to the imaginary axis, and are chosen so that the real parts of the

arguments of all Gamma functions are positive. The same condition determines an allowed

region for ε, which we will assume that includes the point ε = ε0. For the sake of clarity,

we will consider the case ε0 < 0, but the method proceeds analogously when ε0 > 0.

The first step is to find the maximum value ε = ε1, with ε1 ≤ 0, for which the

representation holds. At this value, one or some of the positions of the poles run into a

contour. If the set of these poles, P, is empty, i.e. no poles cross the contours when moving

ε from ε0 to 0, then the integral can be safely expanded around ε = 0. So, let us focus on

the more interesting case in which P is non empty. Here we have to distinguish between

ε1 = 0 and ε1 < 0.

If ε1 = 0, at least one pole lies on the contours for the terminating value of ε. Then,

the representation has an unregulated singularity, and it is not feasible to perform an ε

expansion and evaluate the contour integrals numerically. To remedy the situation we

must change the contour of integration; we use the Cauchy theorem and displace one or

more of the contours parallel to the imaginary axis. Then, we attempt afresh the analytic

continuation; the poles should now hit the contour at ε1 < 0. If this does not happen, due

to an unfortunate choice of the contour we displaced, we simply iterate the procedure until

we succeed.

When ε1 < 0, we have to determine the residues in the poles that cross the contour. If

there is only one pole in P the situation is simple. Let us look back at the specific example

of the one-loop box. By applying the previous steps of the algorithm, we find that the first

pole to cross a contour is at −1 − ε − w2 − w3 = 0. We then choose one of the multiple

integrals, e.g. the w2 integral, and subtract the residue of the integrand on this pole, at

w2 = −1 − ε − w3, to the representation:

R(ε = ε0) = R(ε1) − Res(R)|w2=−1−ε−w3
(3.2)

The residue term in the above expression is a new multiple Mellin-Barnes integral with one

integration variable less than in R. In our example, the pole crosses the w2 contour from

the right side and we subtract its residue from the original representation. If a pole crosses

the contour from the left, we should add its residue. At this point, we have achieved the

analytic continuation in ε from ε0 to ε1. We now repeat the algorithm setting as initial

value ε0 = ε1, and perform the analytic continuation to the next value of ε where a new

crossing occurs. We proceed iteratively, until we find all poles which cross the contours of

integration in the terms of eq. (3.2) and its descendants.

The algorithm is more complicated if many poles cross simultaneously the contour

at ε = ε1. In our one-loop box example, if we had chosen a symmetric contour C =

{Re(w1) = −0.2,Re(w2) = −0.2,Re(w3) = −0.2} then we would have two poles crossing

at the same time: P = {−1 − ε − w13 = 0,−1 − ε − w23 = 0}. One way to deal with
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this situation is to displace the contours in such a way that the degeneracy is removed,

i.e. introduce asymmetric contours from the beginning. Another alternative is to take

combined residues in all the poles. To correctly account for all the terms in this case, we

can imagine that the contours are only slightly displaced from their current position. Then

the poles will hit them one at the time and we can take residues successively. Finally, we

can restore the original position of the contours without affecting the position of the poles.

There is, however, a caveat in taking multiple residues. Let us consider the case of

the one-loop box, where the poles P1 = −1 − ε − w13 and P2 = −1 − ε − w23 hit the

contour at the same time. We take residues in sequence, considering first P1. We make

the “unfortunate” choice to take the residue on the w3 integration variable, and not on w1.

The analytic continuation yields:

R(ε ' ε0) = R(ε ' ε1) − Res(R)|w3=−1−ε−w1

Then we consider the crossing of the P2 pole on each of the two terms on the right hand

side of the above expression. We find no problems in taking the residue of the first term.

However, the position of the P2 pole for the second term is now written:

P2 = 1 − ε − w2 − w3|w3=−1−ε−w1
= w1 − w2.

The pole P2 is now independent of ε and gets nailed to the contour. This situation is

similar to the one we encountered for ε1 = 0, and we can deal with it in exactly the same

way by displacing the contours.

We apply the algorithm recursively, to all the terms which are generated by adding the

residues of crossing poles to the original parameterization. At the end of this procedure,

we obtain a sum of contour integrals plus some terms that do not contain any remaining

integral due to taking residues on all integration variables. The method assures that the

sum of all these contributions equals the original loop integral when ε ' 0. So we can

expand in a power series of ε.

In this section, we have presented the algorithm assuming that only the dimension

parameter ε is required to regulate the Mellin-Barnes parameterization. However, the

method proceeds identically for integrals where multiple analytic regulators are required.

This could be the case in non-covariant gauges or in integrals with irreducible numera-

tors [30] or additional positive powers of propagators [29].

The actual implementation of the algorithm in a set of routines in both MAPLE and

MATHEMATICA is very efficient, and allows to perform the analytic continuation in the

regulator parameters in a few seconds, for all the Mellin-Barnes representations that we

have studied in this paper.

4. Mellin Barnes representations for tensor integrals

Mellin-Barnes representations, with the exception of the massless two-loop diagonal box

topology [29], have been traditionally employed for the evaluation of master integrals. In

this section, we introduce an efficient generalization of the method to tensor integrals; our
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method does not require any reduction techniques to master integrals. Common reduction

methods produce extremely large algebraic expressions which may also have spurious sin-

gular denominators. Here we derive efficient representations for one-loop tensor integrals,

which are amenable to numerical integration. We can derive analogous representations for

multi-loop integrals by using the re-insertion method of section 2.

We consider a generic one-loop tensor integral of rank m with n external legs:

In,m =

∫

ddk

i π
d
2

kµ1 . . . kµm

[

(k + q1)2 − m2
1

] [

(k + q2)2 − m2
2

]

· · · [(k + qn)2 − m2
n]

(4.1)

where,

q1 = 0, qj =

j−1
∑

i=1

pi, (4.2)

and pi are external incoming momenta. We first introduce Feynman parameters for the

denominator. We obtain,

In,m = Γ(n)

∫

ddk

i π
d
2

∫

(

n
∏

i=1

dxi

)

δ

(

1 −
n

∑

i=1

xi

)

kµ1 . . . kµm

[(k + P )2 − ∆]n
, (4.3)

where

P =
n

∑

i=1

xiqi, (4.4)

and

∆ =
n

∑

i=1

xim
2
i +

n
∑

j=2

∑

i<j

xixj

[

− (qi − qj)
2
]

(4.5)

Now we perform the usual shift in the loop momentum, k = K − P , and we obtain,

In,m = Γ(n)

∫

(

n
∏

i=1

dxi

)

δ

(

1 −
n

∑

i=1

xi

)

∑

r≤m

∫

ddK

iπ
d
2

{KrPm−r}
[µ1,...,µm]

(K2 − ∆)n
, (4.6)

where, we denote

{

KrPm−r
}[µ1,...,µm]

=
∑

{j1,...,jm}

Kµj1 · · ·Kµjr Pµjr+1 · · ·Pµjm , (4.7)

{j1, . . . , jm} ∈ permutations(1, . . . ,m).

We find the standard Feynman representation for the generic tensor one-loop n-point func-

tion, by integrating the loop momentum:

In,m = (−1)n
∫

(

n
∏

i=1

dxi

)

δ

(

1 −
n

∑

i=1

xi

)

1

∆n− d
2

×
∑

r≤m

Γ
(

n − d
2 − r

2

)

2
r
2

{

ArP
m−r

}[µ1,...,µm]
∆

r
2 , (4.8)
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where Ar = 0 for r odd, and Ar = g[µ1µ2 · · · gµr−1µr ] for r even. We observe that the sum,

in the second line of the equation, is a polynomial in the Feynman parameters, with tensor

coefficients:

∑

r≤m

Γ
(

n − d
2 − r

2

)

2
r
2

{

ArP
m−r

}[µ1,...,µm]
∆

r
2 =

∑

{νi>0}

C({νi}; {p
µj

i })xν1−1
1 · · · xνn−1

n (4.9)

For the scalar integral with unit powers of propagators, this sum is Γ(n − d
2).

We will use eq. (4.8) to derive Mellin-Barnes representations for the tensor loop-

integral. We would like to exploit the fact that the Feynman representation of the scalar

and tensor integrals have the same denominator:

1

∆n− d
2

.

In section 2, we have seen that we can obtain a Mellin-Barnes representation for a loop

integral by decomposing the denominator of the Feynman parameterization with eq. (2.5).

We should anticipate that the Mellin-Barnes representations of tensors and scalars are,

therefore, very similar. We can verify this intuition, if we consider one generic term in the

polynomial of eq. (4.9), and follow the steps of section 2. Decomposing the denominator

with eq. (2.5), we obtain

xν1−1
1 · · · xνn−1

n

∆n− d
2

→ xν1−1
1 · · · xνn−1

n

(−sα)
d
2
−n

∫

(

α−1
∏

i=1

dwiΓ(−wi)(−si)
wi(−sα)−wi

)

Γ(n −
d

2
+ w12...(α−1))x

β1(~w)
1 · · · xβn(~w)

n(4.10)

where α is the number of kinematic scales si in the integral. The factors x
βi(~w)
i are uni-

versal for all terms in eq. (4.9), and originate from the dependence of ∆ on the Feynman

parameters. We now proceed to integrate out the Feynman parameters using eq. (2.7).

This integration yields Gamma functions

x
βi(~w)+νi−1
i

R

dxi
−→ Γ(βi + νi) = Γ(1 + βi)(1 + βi)(2 + βi) · · · (νi − 1 + βi) (4.11)

Rewriting all Gamma functions as above in eq. (4.9), we obtain, for the tensor integral, the

Gamma functions of the scalar integral multiplied by simple factors with Mellin-Barnes

integration variables.

The result for the one-loop tensor integrals depends on the topology and the rank of

the tensors in a rather complicated manner. However, we find that the representation is of

the following form

In,m =
(−sα)

d
2
−n

(2πi)α−1

∫

(

α−1
∏

i=1

dwiΓ(−wi)(−si)
wi(−sα)(−wi)

)

Γ(scalar)(wi, . . . , wα−1)

×h(m)(w1, . . . , wα−1), (4.12)
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The first line of the above representation contains all the terms which already appear in

the analogous representation of the scalar integral with unit powers of propagators. The

function h(m) is a polynomial in the Mellin-Barnes variables, with tensor coefficients in

terms of the external momenta. This is very important for our strategy to evaluate tensor

integrals and Feynman diagrams. The polynomial in the numerator is smooth, and it

does not affect the analytic continuation in ε. We can therefore perform the continuation

collectively for all tensor integrals and diagrams of the same topology.

We organize the evaluation of tensor integrals and diagrams of a topology as follows.

We first find the Mellin-Barnes parameterization of the scalar integral of the topology, and

multiply the integrand with a template function h({wi}) which we assume depends on all

Mellin-Barnes variables. Then, we apply the analytic continuation algorithm of section 3

keeping h general. We expand in ε, and create numerical programs for the evaluation of the

expansion for any smooth function h. This part of the evaluation needs to be performed

only once for a given topology. Then we must identify the polynomial for the evaluation

of the specific tensors or diagrams that we are interested in. We have written FORM [43]

and MATHEMATICA programs which perform the steps that we described in this section,

and derive the explicit functional form of the polynomials in eq. (4.12). We then write

numerical routines for their evaluation, and link them to the general routines for the ε

expansion of the integrals of the topology.

This approach is efficient for the application of our technique to tensor integrals. It

turns out, however, that the expressions for the polynomials are quite long for high rank

tensors. We have observed that we can reduce the size of the expressions substantially

with a simple modification. The terms ∆
r
2 in eq. (4.8) are lengthy, and when we integrate

out the Feynman parameters they give rise to large expressions in h(m) of eq. (4.12). We

rewrite eq. (4.8) in a different way,

In,m = (−1)n
∫

(

n
∏

i=1

dxi

)

δ

(

1 −
n

∑

i=1

xi

)

×
∑

r≤m

Γ
(

n − d
2 − r

2

)

2
r
2

1

∆n− d+r
2

{

ArP
m−r

}[µ1,...,µm]
(4.13)

Then, we introduce a Mellin-Barnes decomposition for each denominator:

1

∆n− r+d
2

,

and integrate out the Feynman parameters. At the end of this procedure, we obtain a sum

of
[

m
2

]

+ 1 Mellin-Barnes integrals for a tensor of rank m. All integrals correspond to the

Mellin-Barnes representation of the scalar integral with shifted dimension d → d+ r. Each

of them has a different polynomial h
(m)
r in the numerator. However, these are substantially

shorter than the polynomial h(m) in eq. (4.12).

It is worth to note that, with our method, we never introduce spurious singularities.

The evaluation of the higher rank tensors and diagrams in gauge theories is very efficient,

since we never require the manipulation of lengthy expressions. The polynomials h
(m)
r can
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be large, however, they require a minimum amount of handling before generating numerical

codes for their evaluation.

Here we have presented the derivation of efficient representations for one-loop integrals.

The method may be applied to multi-loop integrals using the one-loop tensor integral

representations as building blocks. The analogous functions of h
(m)
r in multi-loop tensors

contain Gamma functions in the denominator. However, they are smooth and maintain

the properties which are required for a collective evaluation of all tensors of a topology.

Explicit applications with multi-loop tensor integrals will be examined in future work.

5. Numerical evaluation of Mellin-Barnes representations

After analytic continuation, the contour integrals can be safely expanded in power series

of ε. The coefficients of the expansion are also contour integrals which, in general, contain

in their integrand Gamma functions, Gamma function derivatives, simple logarithms, and

powers of the kinematic parameters. In earlier works, these integrals were computed an-

alytically. The standard approach is to evaluate them by means of the residue theorem,

i.e. summing an infinite number of residues and expressing the power series as logarithms,

polylogarithms and harmonic polylogarithms.

This method is cumbersome for the evaluation of integrals with more than one Mellin-

Barnes variable. In all cases presented in the literature, integrals with more than one

dimension are reduced to one-dimensional integrals with a variety of clever, however not

general, tricks. Typical procedures include direct integration in simple situations, the

application of Barnes lemmas [27, 28, 41], and the expansion in Laurent series around an

integer value of one of the variables. In a few cases, a careful inspection of the multi-

dimensional integrals reveals exact cancellations between different components which yield

significant simplifications.

Many integrals which are relevant for physical applications, such as the massless double

box with two external legs off-shell and one-loop tensor integrals with six external legs,

after the analytic continuation in ε, are expressed in terms of hundreds of Mellin-Barnes

components; some of them have a very high dimensionality. The analytic methods are

not suitable for such problems. In our method, we choose to evaluate the MB integrals

numerically by direct integration over the contours.

The procedure we follow is, conceptually, straightforward. In practice, the implementa-

tion of the numerical evaluation requires a significant work in automating the book-keeping

of the various terms. Tensor integrals require significantly more complex book-keeping due

to large expressions that multiply the Gamma functions in the integrand of their Mellin-

Barnes representation. Our computer programs are organized in the following way. We

first use MAPLE, FORM [43], and MATHEMATICA routines to derive Mellin-Barnes

representations for the integrals that we need to compute. We then perform the analytic

continuation of section 3, and we expand the integrands in powers of ε using MAPLE and

MATHEMATICA. As the next step, we translate the integrands into FORTRAN routines

which evaluate them as complex quantities.

– 17 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

There are many options to calculate numerically the sum of the Mellin-Barnes inte-

grals which emerge from the routines for the ε expansion. For example, we can combine

all contributions in a single common integrand, so that large numerical cancellations take

place before integration. However, the finding of the peaks and the adaptation of the inte-

gration routines become less efficient. Following a diametric approach, we could integrate

all components separately and compute their sum at the end. Then, the adaptation of the

numerical integration is optimal, however, the numerical precision is sensitive to cancella-

tions. In practice, we follow a hybrid approach and group together integrals with equivalent

contours. We have achieved a reasonable efficiency and speed for all the computations that

we present in this paper. Since we aim to keep our integration method general, we do not

attempt any special simplifications by, for example, applying Barnes lemmas or exploiting

symmetries of particular contours.

For the numerical integration, we maintain the contours as straight lines parallel to

the imaginary axis. We map them onto a real interval with a simple transformation,

1

2πi

∫ c+i∞

c−i∞
dwf(w) =

1

2π

∫ 1

0

dλ

λ(1 − λ)
f

(

c − i ln

(

λ

1 − λ

))

(5.1)

In all cases that we have considered, the integrands vanish rapidly when the integration

variables take values away from the real line (λ ' 1
2). The Mellin-Barnes integrals do

not present problematic numerical instabilities, and converge rather fast. We perform the

multidimensional integrations using the Cuhre and Vegas routines of the CUBA library [42].

To gain some speed, we integrate the real and imaginary parts of the integrals concurrently,

using the same grid. The grid is adapted to the peaks of the real part, however, the quality

of the integration for the imaginary part is only mildly affected. On the other hand, there

is another subtle point concerning the convergence of the imaginary parts. As they always

start an order later in the expansion in ε, the analytic expressions for them would be simpler

than the corresponding real ones. When integrating numerically this relative simplicity is

reflected by a faster convergence when compared to the real pieces at the same order.

The numerical results depend on the values for the kinematic scales of the integrals.

With our approach, we use the same expressions for the evaluation of the integrals in all

kinematic regions. As we explained earlier, the only analytic continuations in kinematic

variables that we must perform, is for simple functions of the type (−sij)
z and log(−sij).

These are implemented trivially, in a branched format, in numerical programs. In this

paper, we present multi-loop integrals for fixed kinematic parameters. However, we have

arranged our routines so that a numerical integration over the phase-space can be performed

simultaneously with the Mellin-Barnes integrations.

A problematic case for our numerical algorithms is the evaluation of loop integrals

with massive internal propagators in non-Euclidean kinematic regions. Typically, Mellin-

Barnes represenations for such integrals exhibit a very slow damping at ±i∞ in physical

regions. The mapping of the integration region to a finite interval that we have considered

in eq. (5.1) is not adequate, and contour deformations together with more sophisticated

algorithms for the evaluation of oscillatory integrals are required. We defer the study of

such situations for a future project.

– 18 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

P1

P

P

P

P

P

2

3

4

5

6

Figure 3: The hexagon topology.

We have achieved a full automatization of the code generation for the numerical evalu-

ation. This has allowed us to apply our method to diverse problems. Our approach can be

improved and refined further in the future by considering, for example, a clever analysis of

the terms before integration in order to avoid numerical cancellations or more sophisticated

mappings which can smoothen the peak structure of the integrands. However, as we will

see in the rest of the paper, our first, naive, implementation is already sufficient to obtain

accurate results for complicated integrals in a reasonable time.

In what follows we present results for one, two, and three loop integrals. Some of

the integrals are known analytically, and we use them to verify our numerical programs.

We also present new loop integrals, which would be extremely tedious to calculate with

traditional methods.

6. Results

In this section we present results for one, two, and three-loop integrals that we obtain with

our method. For each integral, we present the coefficients of its expansion in ε = 2 − d
2

through the finite term:

I =

∫

(

∏

i

ddki

iπ
d
2

)

{kµ
i }

∏

j propagatorj

=

r
∑

i=0

ci ε−i , (6.1)

where r is the depth of the leading pole in ε. We estimate the errors associated with our

results for ci, by adding, in quadrature, the integration errors of all contributions from the

residue decomposition.

6.1 One loop hexagon: the scalar integral

The first integral we consider is the massless one-loop hexagon, depicted in figure 3. For

massless external legs, we derive an eight-dimensional Mellin-Barnes representation for

this integral. Due to the high dimensionality, the analytic continuation in ε involves the
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3
1

point s12 s23 s34 s45 s56 s16 s123 s234 s345

P1 1 -0.232033 0.096793 0.025066 0.465569 -0.015783 0.63356 -0.219996 0.336498

P2 1 -0.056339 0.054104 0.111985 0.583564 -0.038557 0.74554 -0.191061 0.260063

P3 1 -0.336912 0.099306 0.228826 0.333228 -0.086216 0.64116 -0.286003 0.580452

P4 1 -0.310819 0.012151 0.020687 0.561466 -0.349136 0.58216 -0.318051 0.114844

P5 1 -0.07491 0.048452 0.279727 0.314164 -0.426813 0.73852 -0.449749 0.532752

P6 1 -0.447378 0.10597 0.052091 0.277082 -0.484988 0.32942 -0.400468 0.170418

P7 1 -0.081759 0.143257 0.139358 0.183411 -0.544412 0.81512 -0.361942 0.31596

P8 1 -0.115263 0.054869 0.154172 0.209043 -0.569659 0.63722 -0.477605 0.410718

P9 1 -0.331123 0.011523 0.033009 0.252287 -0.635452 0.38202 -0.441643 0.309497

P10 1 -0.297484 0.010637 0.05663 0.345614 -0.88129 0.68562 -0.541753 0.083132

Table 1: Explicit values of the invariants for some of the phase space points used for the evaluation

of the hexagon topology. The points correspond to the physical region of the 2 → 4 scattering of

massless particles.

crossing of the contours of integration from many poles, and the Mellin-Barnes expression

after the continuation consists of about two hundred terms. This example demonstrates

the advantage of the automatic algorithm we described in section 3, since the book-keeping

is done automatically and our routines perform the ε expansion in fractions of a minute.

After the analytic continuation and the expansion in series of ε, only integrals with

low dimensionality contribute to the poles and finite pieces of the series. The integration

over Feynman parameters produces a denominator factor 1/Γ(−2ε), which contributes

factors of ε in the series expansion. The eight-dimensional component, in which no residues

have been taken, drops out from the finite part. In addition, most of the residues in the

analytic continuation do not give rise to poles in ε; a few components only develop a

singularity that compensates the ε in the overall factor. For the scalar hexagon, we find

integrals with up to three dimensions which contribute to the poles and the finite term.

This mechanism, which reduces the dimensionality of the representation in the leading

coefficients of the ε expansion, is not specific to the hexagon topology, but is typical of

Mellin-Barnes representations of scalar multi-leg integrals.

In table 2 we present explicit results for the scalar hexagon in phase space points

corresponding to the physical region for the 2 → 4 process. To check the efficiency of our

integration routines in all the phase-space, we have sampled hundreds of points. Here, we

only show representative results in the phase-space points of table 1. These points were

generated starting from explicit values for the momenta in four dimensions, so they have

a vanishing Gram determinant.

As can be seen from table 2, our method is perfectly capable of evaluating multi-scale

integrals, such as the scalar hexagon, reliably in all phase-space. The results in the table

correspond to a fixed number of evaluations, thus the difference in the relative errors for

different points. It took a couple of minutes per point on a 2.8GHZ CPU to evaluate them.

6.2 One-loop hexagon: tensor integrals

The most severe problem in evaluating multi-leg amplitudes, is the appearance of tensor

numerators in the loop integrals. Our method, provides a powerful tool for their evaluation.
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0
6
)
0
3
1

Point c2 c1 c0

P1 -24550.802400(0) -129377.216040(5) -249435.(40.)

+i·0.000000(0) -i·69329.856499(5) i·365517.9 (3)

P2 -10666.332700(0) -42307.989040(3) -34595.(66.)

+i·0.000000(0) -i·18370.333000(3) -i·53139.1(8)

P3 -1153.682480(0) -3091.953473(3) 2292.(2.)

+i·0.000000(0) -i·2868.081530(4) -i·6531.15(6)

P4 -48753.897600(0) -256890.405260(4) -432690.(5.)

+i·0.000000(0) -i·152982.841000(4) -i·806442.61(4)

P5 -2502.711680(0) -10214.467200(2) -8934.(16.)

+i·0.000000(0) -i·7425.550140(3) -i·30275.25(6)

P6 -3857.953670(0) -11372.775324(2) 6715.7(9)

+i·0.000000(0) -i·12047.807600(3) -i·35512.41(2)

P7 -2078.190700(0) -6541.063310(1) 1413.(2.)

+i·0.000000(0) -i·6138.816950(2) -i·18965.48(6)

P8 -3356.184660(0) -13032.698020(3) -8558.(6.)

+i·0.000000(0) -i·10343.407301(2) -i·40209.00(3)

P9 -45864.213500(0) -281098.336280(4) -649614.(5.)

+i·0.000000(0) -i·144019.061999(3) -i·882892.34(2)

P10 -21516.252000(0) -97739.299610(3) -99008.(13.)

+i·0.000000(0) -i·67551.061100(3) -i·306919.34(2)

Table 2: The scalar massless hexagon evaluated in some physical points of the phase space. The

errors of the numerical integration are quoted in parenthesis, and they affect the last figure/s

respectively.

The scalar hexagon, which we discussed before, provided a nice test-ground for the analytic

continuation algorithm and the numerical integration strategy. Here, we consider tensor

integrals for the same topology, in order to demonstrate the potential of the method for

computing realistic quantities that arise in gauge theories.

Using the procedure described in section 4, we perform the analytic continuation for an

arbitrary tensor. At variance with the scalar case, now we find components with more than

three MB variables contributing to the finite pieces in ε. For instance, for a typical rank

three tensor, integrals with all eight Mellin-Barnes variables are required. This calculation

provides stringent tests on our implementation, due to the complex book-keeping of the

tensorial terms in the Mellin-Barnes representations, and the efficiency of our routines to

evaluate the integrals with high dimensionality.

In table 3 we show results for tensors up to rank 6 evaluated in a symmetric point {sij =

sijk = −1} in the Euclidean region. For these examples, we contracted all the loop momenta

in the numerator with the same external momentum. All such tensor contractions, with odd

rank, should vanish; we reproduce this result. On the table, we also show results obtained

by reducing the tensors using the program AIR [19]. We were not able to reduce the high

rank tensors to master integrals in a closed analytic form. The reduction was only possible
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Tensor MB AIR

q2 · k (0.000000(0) + i · 0.000000(0))ε−2+ 0

(0.00000(1) + i · 0.00000(1))ε−1+

(0.000(2) + i · 0.00000(1))

q2 · k q2 · k (0.500000(0) + i · 0.000000(0))ε−2+ 0.5ε−2+

(0.71139(1) + i · 0.00000(1))ε−1+ 0.711392ε−1+

(0.0947(8) + i · 0.00000(1)) 0.094845

q2 · k q2 · k q2 · k (0.000000(0) + i · 0.000000(0))ε−2+

(0.0000(1) + i · 0.00000(1))ε−1+ 0

0.00(2) + i · 0.02(2))

q2 · k q2 · k q2 · k q2 · k (0.125000(0) + i · 0.000000(0))ε−2+ 0.125ε−2−

(0.3861(1) + i · 0.00000(1))ε−1+ 0.386181ε−1+

(0.65(3) + I · 0.02(3)) 0.65996

q2 · k q2 · k q2 · k q2 · k q2 · k (0.000000(0) + i · 0.000000(0))ε−2+ 0

(0.00000(9) + i · 0.00000(1))ε−1+

(0.04(4) − i · 0.02(4))

q2 · k q2 · k q2 · k q2 · k q2 · k q2 · k (0.031250(0) + i · 0.000000(0))ε−2+ 0.03125ε−2−

(0.12466(6) + i · 0.00000(1))ε−1+ 0.1246703ε−1+

(0.27(1) − i · 0.00(1)) 0.279587

Table 3: Contracted tensors evaluated in a symmetric point in the Euclidean region. We compare

with results obtained with the program AIR.

by substituting the kinematic invariants to their numerical value at this particular phase-

space point before solving the system of IBP equations. We have also made additional

comparisons with the reduction method, for other tensor contractions and a different point

inside the physical region.

As in the scalar case, we sampled several phase space points in the physical region,

calculating a variety of contracted tensors at each rank. In table 4 we list the cases we

considered, and in table 5 we show explicit results for the contraction q2 · k q2 · k q3 · k q4 ·

k q5 · k q6 · k in the same phase space points that we considered for the scalar hexagon.

We find that our routines perform extremely well, including the highest rank cases that we

considered here.

We should note that, due to the way that we organize the evaluation of the tensors in

section 4, we do not anticipate that the evaluation of Feynman graphs, such as the ones in

the one-loop six photon amplitude, are significantly harder than the six rank tensors that

we presented. In addition, our routines allow a combined integration over the Mellin-Barnes

variables and the kinematic invariants.

6.3 On-shell planar double box

We now compute two-loop integrals, and we consider first the massless planar double

box with on-shell legs shown in figure 4. This integral is known analytically in ref. [27].

As discussed in section 2, it can be expressed as a MB contour integral in four complex
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Rank Contraction

1 q2 · k

2
q2 · k q4 · k

q2 · k q5 · k

3
q2 · k q2 · k q4 · k

q2 · k q4 · k q5 · k

4

q2 · k q2 · k q3 · k q4 · k

q2 · k q4 · k q5 · k q6 · k

q2 · k q3 · k q5 · k q6 · k

5

q2 · k q3 · k q4 · k q5 · k q6 · k

q2 · k q2 · k q4 · k q6 · k q6 · k

k · k q2 · k q3 · k q4 · k

6

q2 · k q2 · k q3 · k q4 · k q5 · k q6 · k

k · k q2 · k q3 · k q4 · k q5 · k

k · k k · k k · k

Table 4: Tensor contractions evaluated for the hexagon topology.

2p p3

4pp1

Figure 4: The massless double box.

dimensions. Performing the analytic continuation in ε, we get terms where residues in all

the variables have been taken (i.e. terms without any contour integral left); these contain

poles through 1/ε4. The terms through O(ε0) require Mellin-Barnes integrals with one and

two integration variables.

In figure 5 we show our results for the finite pieces of the on-shell double box in the

physical region for the p1+p2 → p3+p4 process depicted in figure 4. We set s = (p1+p2)
2 =

1, and plot, as functions of t = (p2 − p3)
2, the finite term c0 and the comparison of our

numerical calculation to the analytic result of [27].

As can be seen from the figure, it is possible to achieve an accuracy of a few parts

in ten thousand, in a few seconds per phase-space point. The bigger error band for the

imaginary part, reflects our naive strategy to integrate both real and imaginary part with

the same grid. The coefficients for the simple and double poles in ε, not shown in the

figure, agree with the analytic calculation with even better accuracy, whereas the cubic

and quartic poles are analytic expressions also in our case (as they do not involve any MB

integration) and coincide with the ones in [27].
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E
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1
0
(
2
0
0
6
)
0
3
1

Point c2 c1 c0

P1 − 402.790580 (0)

+ i · 0.000000 (0)

− 1919.50 (1)

− i · 1248.33 (2)

− 3019. (55.)

− i · 6068. (50.)

P2 − 253.831615 (0)

+ i · 0.000000 (0)

− 876.7 (2)

− i · 676.4 (1)

− 538. (56.)

− i · 2440. (50.)

P3 − 47.453378 (0)

+ i · 0.000000 (0)

− 149.099 (6)

− i · 145.128 (4)

− 79. (2.)

− i · 485. (2.)

P4 − 3876.804240 (0)

+ i · 0.000000 (0)

− 23083.200 (2)

− i · 12161.074 (2)

− 53835. (6.)

− i · 72507. (5.)

P5 − 52.452711 (0)

+ i · 0.000000 (0)

− 214.000 (2)

− i · 158.220 (2)

− 214. (2.)

− i · 663. (1.)

P6 − 224.589492 (0)

+ i · 0.000000 (0)

− 887.7120 (5)

− i · 701.8064 (5)

− 888. (1.)

− i · 2796.9 (9)

P7 − 54.532983 (0)

+ i · 0.000000 (0)

− 172.177 (4)

− i · 161.007 (7)

− 26. (2.)

− i · 531. (2.)

P8 − 47.254266 (0)

+ i · 0.000000 (0)

− 179.409 (1)

− i · 143.862 (2)

− 127. (1.)

− i · 558. (1.)

P9 − 865.507076 (0)

+ i · 0.000000 (0)

− 5612.7500 (2)

− i · 2716.2898 (1)

− 15300. (2.)

− i · 17634. (1.)

P10 − 1318.087970 (0)

+ i · 0.000000 (0)

− 6160.7460 (9)

− i · 4137.4238 (2)

− 7611. (2.)

− i · 19356. (2.)

Table 5: Results for the rank six tensor q2 · k q2 · k q3 · k q4 · k q5 · k q6 · k for the hexagon topology

at one loop. The phase space points are detailed in table 1.

6.4 On-shell non-planar double-box

Now we compute the non-planar two-loop box with massless external legs depicted in

figure 6. This integral has been computed analytically in ref. [28] using a four-fold Mellin-

Barnes representation. Instead of deriving a representation with the aid of the re-insertion

method, we use the the representation in ref. [28] for our numerical evaluation. This

selection allows us to check our algorithms for the expansion in ε with the detailed decription

in ref. [28]. Furthermore, this representation does not impose the physical constraint

between the three invariants, s+t+u = 0, leading to a more complicated analytic structure.

This is an additional test on our programs for evaluating integrals in phase space regions

which are separated by complicated thresholds. The integral is, also, 1/ε4 divergent. Up

to three-dimensional integrals contribute to the ε expansion through O(ε0). In ref. [28], it

was shown that, with clever manipulations, it is possible to reduce all multiple integrals

– 24 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

t

R
e(

 c
0 

)

0

500

1000

1500

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
t

nu
m

er
ic

/a
na

ly
tic

-1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x 10
-3

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

t

Im
( 

c 0 
)

-300

-200

-100

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
t

nu
m

er
ic

/a
na

ly
tic

-1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x 10
-3

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Figure 5: Results for the finite part of the planar double box in the physical region for a 2 → 2

process. On the two left panels we plot the real and imaginary parts (upper and lower plots

respectively) of the finite term as a function of t for fixed value of s = 1. The estimated error of

the numerical integration lies within the size of the points. On the right panel we show the ratios

of the numerical calculation to the analytic results of [27] for the same kinematics, the bands in

this case are given by the error in the numerical integrations.

2p p3

4pp1

Figure 6: The cross box.
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Figure 7: Results for the finite piece of the non planar box with seven propagators in the region

u, t < 0 and s = −t− u for s = 1 as a function of t. The left panels show our numerical results for

the real and imaginary part (upper and lower plot respectively) and the right ones the corresponding

comparisons with the analytic calculation of [28].

to integrals with only one dimension. Keeping our routines general, we have chosen not to

reduce the dimensionality of the multiple integrals and evaluate them numerically.

In figures 7 and 8 we show our results for the finite piece of the non-planar box in the

regions (i) u, t < 0 and s = −t − u and (ii) u, s < 0 and t = −s − u respectively, where

s = (p1 + p2)
2, t = (p2 − p3)

2 and s + t + u = 0. In case (i) we fixed s = 1 as reference and

plot the results as a function of t, whereas in (ii) t = 1 is fixed and we change s within its

allowed range. We show the comparison of our results with the analytic calculation of [28].

In this case, the relative errors obtained by numerical integration are bigger than in

the the on-shell double box. This is particularly noticeable in the imaginary part in both

regions (i) and (ii), for which the relative error reaches 1-2%. However, this only happens
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Figure 8: Results for the finite piece of the non planar box with seven propagators in the region

u, s < 0 and t = −s − u for t = 1 as a function of s. The upper and lower left panels show

our numerical results for the real and imaginary parts, respectively; and the two right ones the

corresponding comparisons to the analytic calculation of [28].

for non-significant points of the phase-space in which the magnitude of the imaginary part

is almost zero (notice that in both regions, the imaginary part of the finite term changes

sign twice).

The non-planar double-box has a complicated analytic structure in terms of the kine-

matic invariants, since there is no Euclidean kinematic region for this integral. The two

kinematic regions that we study here, require complicated analytic continuations with tra-

ditional methods. With our method, it is particularly simple to compute loop integrals in

different regions of phase space. Our results demonstrate that the numerical integration

of the contour integrals allows for a trivial analytic continuation in the invariants, giving

correct and accurate results in all phase-space.

– 27 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

p2

p3

p4

p1

(a)

2p p3

4pp1

(b)

Figure 9: The two kinematical configurations considered for the double box with one massive leg.

(a) the decay process p4 → p1 + p2 + p3 and (b) the scattering p1 + p2 → p3 + p4. The double line

corresponds to the massive particle, p4.

6.5 Planar double-box with one leg off-shell

Our next example is the planar double-box with one external mass. The first results for

this integral were obtained in [22] using sector decomposition. Soon afterwards it was

computed analytically in [31], and with differential equation method in [37].

We derive a 5-fold MB representation for this integral in section II. The integral is

1/ε4 divergent; after the expansion in ε, we find that the double and simple poles and the

finite term, contain three-dimensional Mellin-Barnes integrals.

In figure 10 we show the results for this integral in the region corresponding to the

decay of a heavy particle p4 → p1 +p2 +p3 (figure 9a), where we have fixed the mass of the

particle p2
4 = s123 = 1 and one of the invariants s13 = (p1 + p3)

2 = 3/10, and we consider

values of s23 = (p2 + p3)
2 within the allowed range. Again, the relative errors are of the

order of the few per mille, with highest values in the points in which the absolute value

of the integral is small (in this case both the real and the imaginary components change

sign).

For this topology we also considered the kinematical region corresponding to a p1+p2 →

p3 + p4 process being p4 the massive momentum (see figure 9b). The corresponding results

are shown in figure 11 for fixed values of s = (p1 + p2)
2 = 1 and p2

4 = 1/10 as a function of

t = (p2 − p3)
2. Again we find very good agreement with the analytic results in both phase

space regions.

6.6 Planar double box with two adjacent massive legs

We now make one further step for the planar double box and consider the case of two

external adjacent masses. This integral has been evaluated for the first time, in some

points in the Euclidean region, in [23].

As shown in section II, it is possible to get a MB representation for the double box

with two adjacent massive legs with six MB parameters. Again, after the analytic contin-

uation, the effective dimensionality is reduced by factors containing gamma functions in

the denominator. In the present example, only integrals in three dimensions are needed to

compute the finite pieces in the series around ε = 0. Quartic and cubic poles are completely

determined by the pieces with no integrals left.

– 28 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

s23

R
e(

 c
0 

)

-40000

-20000

0

0.1 0.2 0.3 0.4 0.5 0.6
s23

nu
m

er
ic

/a
na

ly
tic

-1

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.1 0.2 0.3 0.4 0.5 0.6

s23

Im
( 

c 0 
)

-4000

-2000

0

2000

0.1 0.2 0.3 0.4 0.5 0.6
s23

nu
m

er
ic

/a
na

ly
tic

-1

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.1 0.2 0.3 0.4 0.5 0.6

Figure 10: Results for the finite term of the double box with one leg off-shell in the physical region

for the decay of a heavy particle, p4 → p1 + p2 + p3 (figure 9a). On the upper and lower left panel

we plot the real and imaginary parts as a function of the invariant s23 = (p2 + p3)
2 for fixed value

of p2
4 = s123 = 1 and s13 = (p1 +p3)

2 = 3/10. On the right panels we show the corresponding ratios

of the numerical calculation to the analytic result of [37] for the same kinematics, the bands are

given by the error in the numerical integrations.

We found complete agreement with the results quoted in [23]. We also compared

our results for some values of the invariants in the Euclidean region with an independent

calculation obtained with our own sector decomposition code. In table 6 we show the

results obtained by the two methods for two phase space points in the mentioned region.

The invariants are defined as s = (p1+p2)
2, t = (p2−p3)

2, M2
1 = p2

3, M2
2 = p2

4 (see figure 12

for the definition of the momenta). We find perfect agreement within the integration errors.

We also present our results in the kinematical region corresponding to the process

p1 + p2 → p3 + p4 shown in figure 12, relevant, for instance, for the process pp → W+W−.

In figure 13 we plot the values of the coefficients, for this configuration, up to the finite
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Figure 11: Results for the finite part of the double box with one leg off-shell in the physical region

for a 2 → 2 process with the massive leg on the final state (figure 9b). On the upper and lower left

panels we plot the real and imaginary parts of c0 as a function of the invariant t = (p2 − p3)
2 for

fixed value of s = (p1 + p2)
2 = 1 and p2

4 = 1/10. On the right panels we show the corresponding

ratios of the numerical calculation to the analytic result of [37] for the same kinematics, the bands

are given by the error in the numerical integrations.
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Figure 12: The double box diagram with two adjacent massive legs.
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Point MB Sector Decomposition

s = t = M2
1 = M2

2 = −1

−0.25 ε−4+

0.288608 ε−3+

−2.22227 (1) ε−2+

−6.577 (6) ε−1+

−10.15 (4)

−0.25 ε−4+

0.2886 (2) ε−3+

−2.222 (2) ε−2+

−6.577 (6) ε−1+

−10.15 (2)

s=−1

t=−1/2

M2
1 =−7/10

M2
2 =−2/5

−0.5 ε−4+

0.463887 ε−3+

−4.47418 (1) ε−2+

−17.46 (1) ε−1+

−37.21 (9)

−0.5 ε−4+

0.4639 (5) ε−3+

−4.474 (4) ε−2+

−17.46 (2) ε−1+

−37.21 (9)

Table 6: Results for the double box with two legs off-shell for two points in the Euclidean region,

we show results obtained with both the Mellin-Barnes technique and wit the sector decomposition

method.

terms as a function of t in the case of two equal masses, M2
1 = M2

2 = 1/10, where the

energy scale is fixed by s = 1. figure 14 corresponds to the same kinematical region but

for s = 1, M2
1 = 1/20 and M2

2 = 1/2. The error bars again lie within the points in the plot

and are, for the finite pieces, typically less that 1% after a run of a couple of minutes per

point on a 2.8GHZ CPU.

6.7 The on-shell massless triple box

At the three loop level, we start by considering the on-shell triple box (figure 15), impres-

sively computed in an analytic way in [32] using the MB technique.

Using the re-insertion method described in section II, we get a 7-fold MB representa-

tion. The analytic continuation leaves us with contributions with up to 5 contour integrals

for the constant pieces in the ε expansion, and poles up to ε−6. Although the numerical

integration is certainly more involved in this case, due to the depth of the poles in ε which

generates very complicated expressions for the finite terms, it is relatively easy to achieve

a precision of ∼ 1%, as shown in figure 16. As in the two loop case we show results for the

physical region corresponding to s > 0, t < 0 with s = (p1 + p2)
2 and t = (p2 − p3)

2. We

compare our results with the analytic computation of [32]. We used the MATHEMATICA

package HPL [44] for the evaluation of the one-dimensional harmonic polylogarithms.

6.8 The triple box with one external mass

As we did for the double box topology, we consider now a further step in complication for

the triple box, adding a mass in the external state. This is, as far as we know, the first

evaluation of a three-loop box with three mass scales.

We obtained a MB representation with 8 variables. As usual, the dimensionality of

the problem is reduced after the analytic continuation and we found that, up to order ε0,

only up to six-fold integrals contribute.
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Figure 13: Results for the double box with two adjacent masses in the physical region of a 2 → 2

process where the two particles in the final state are massive. We plot the values of the coefficients

as function of t for s = 1, M2
1 = M2

2 = 1/10.

We present results for this novel integral in the physical region of the decay of a heavy

particle, p4 → p1 + p2 + p3 (figure 17) as we did in the two loops case. In figure 18 we

show the the corresponding coefficients of the expansion in ε as a function of the invariant
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Figure 14: Results for the double box with two adjacent masses in the physical region of a 2 → 2

process where the two particles in the final state are massive. We plot the values of the coefficients

as function of t for s = 1, M2
1 = 1/20 and M2

2 = 1/2.

s23 for fixed values of the other two variables: p2
4 = 1 and s13 = 3/10. With the notable

exception of the left-most point in the real part of the constant term, the error bars are

all contained in the plotted points. They are typically of the order of 1% or better for the
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Figure 15: The on-shell triple box diagram.
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Figure 16: Results for the finite part of the planar triple box in the physical region for a 2 → 2

process. On the upper and lower left panel we plot the real and imaginary parts, respectively, of

c0 as a function of t for fixed value of s = 1. On the right panels we show the corresponding ratios

of the numerical calculation to the analytic result of [32] for the same kinematics, the bands are

given by the error in the numerical integrations.

finite parts after 50 minutes, in average, per point on a 2.8GHZ CPU.
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Figure 17: The triple box in the decay process p4 → p1 + p2 + p3.

7. Conclusions and outlook

In this paper, we have introduced a new method for the numerical evaluation of arbitrary

loop integrals. We first derive Mellin-Barnes representations by either decomposing di-

rectly the Feynman representation, or by using one-loop representations as building blocks

for representations of multi-loop integrals. For a given representation, we find values of

the space-time dimension and the powers of the propagators which yield a well defined

representation. Then we use automated programs to perform the analytic continuation

to values of the parameters for which the integral may develop divergences. Finally, we

expand in ε and compute the integral coefficients of the expansion numerically.

The method is based on the earlier work of Smirnov [27] and Tausk [28]. The novel

features in our publication are: (i) the automation of the procedure for the ε expansion,

(ii) the numerical evaluation of the coefficients of the expansion, avoiding cumbersome

summations of multiple infinite series and the analytic continuation in the arguments of

polylogarithms, (iii) and the efficient generalization of the method to tensor integrals. We

believe that these new features render our method suitable for the practical evaluation of

multi-loop amplitudes in gauge theories.

We have performed a number of explicit calculations to verify our algorithms and

demonstrate the power of our method. We first recalculated complicated loop integrals

which are only recently known in the literature. Namely, we evaluated the planar and cross

on-shell double boxes, the planar double-box with one leg off-shell, and the triple planar

box with on-shell legs. In all cases, we have found an excellent agreement between our

numerical results and the known analytic results. The analytic results require complicated

analytic continuations of polylogarithms to non-Euclidean kinematic regions. With our

method, we were able to compute the integrals in all kinematic regions effortlessly.

In this paper, we have presented results for loop-integrals which were previously un-

known. At two-loops, we have computed the double-box integral with two adjacent legs

off-shell for independent external mass-parameters. This is one of the most complicated

two-loop box integrals that enters the evaluation of two-loop amplitudes for heavy boson

pair production at colliders. At three-loops, we have computed the planar triple-box with

one off-shell leg; this integral emerges in e+e− → 3 jets, or the production of a single heavy

boson in association with a jet at hadron colliders at NNNLO in QCD. To the best of our

knowledge, it is the first time that a two-loop box with four kinematic scales or a three-loop

box with three scales are ever computed in all physical regions.

– 35 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
1

ss23

R
e(

c 6 
)

50

100

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

6 
)

-1

-0.5

0

0.5

1

0.2 0.3 0.4 0.5 0.6

s23

R
e(

c 5 
)

0

200

400

600

800

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

5 
)

0

250

500

750

1000

0.2 0.3 0.4 0.5 0.6

s23

R
e(

c 4 
)

-2000

-1500

-1000

-500

0

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

4 
)

0

2000

4000

6000

0.2 0.3 0.4 0.5 0.6

s23

R
e(

c 3 
)

-20000

-10000

0

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

3 
)

0

5000

10000

15000

0.2 0.3 0.4 0.5 0.6

s23

R
e(

c 2 
)

-80000

-60000

-40000

-20000

0

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

2 
)

-15000

-10000

-5000

0.2 0.3 0.4 0.5 0.6

s23

R
e(

c 1 
)

-1500

-1000

-500

0

x 10 2

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

1 
)

-1500

-1000

-500

0

x 10 2

0.2 0.3 0.4 0.5 0.6

s23

R
e(

c 0 
)

0

20000

40000

60000

0.2 0.3 0.4 0.5 0.6
s23

Im
(c

0 
)

-4000

-2000

0

x 10 2

0.2 0.3 0.4 0.5 0.6

Figure 18: Results for the triple box with one massive leg in the physical region of the decay of a

massive particle, p4 → p1 + p2 + p3 (figure 17). We show the results for fixed values of p2
4 = 1 and

s13 = 3/10 as a function of the remaining invariant s23.

Many processes with six external legs are particularly important at the LHC. At

present, there has been no NLO calculation of a cross-section for a hadron collider process

with six external states, due to the lack of efficient methods for evaluating loop ampli-
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Figure 19: Results for the triple box with one leg off-shell in the physical region for a 2 → 2

process with the massive leg on the final state. We plot the real and imaginary parts as a function

of the invariant t = (p2 − p3)
2 for fixed value of s = (p1 + p2)

2 = 1 and p2
4 = 1/10.

tudes. In this paper, we applied our method to the evaluation of tensors through rank six

for the hexagon topology. The purpose of this application was two-fold; first, we wanted

to demonstrate that we were able to extend the method to tensor integrals economically,

and second, to setup programs that are efficient for the evaluation of multi-scale one-loop
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amplitudes (e.g. six parton QCD amplitudes). We have found that the evaluation of the

tensor integrals is not significantly more complicated than the scalar integral. The pro-

grams that we developed can be immediately used for the evaluation of the six parton

one-loop QCD amplitudes.

Our technical goals for the current study were to build the necessary programs, imple-

ment an efficient book-keeping platform, and to examine the scaling of computing intensity

in applications with diverse features. We anticipate that our method can be improved and

generalized even further, when we consider issues that were only briefly examined in this

first study. For example, in preliminary investigations, we have found that it is possible

to exploit further the Cauchy theorem. If we specify a kinematic region, it turns out that

some of the numerical integrals can be approximated very accurately by the sum of a fi-

nite number of residues. We expect that we can improve substantially our efficiency if

we replace some of the integrations which involve kinematic scales with appropriate finite

sums of such residues. In addition, we are investigating hybrid approaches, combining our

method with ideas in ref. [45].

The applications of our method are numerous. We believe that it will be particularly

useful for precision calculations of observables in collider physics. We plan to apply our

techniques to key NLO and NNLO calculations for the LHC and to answer more formal

questions on the perturbative behavior of gauge theories in the near future.
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